DUALITY AND FARKAS-TYPE RESULTS FOR DC INFINITE PROGRAMMING WITH INEQUALITY CONSTRAINTS
نویسندگان
چکیده
منابع مشابه
Farkas-type results and duality for DC programs with convex constraints
In this paper, we are interested in new versions of Farkas lemmas for systems involving convex and DC-inequalities. These versions extend well-known Farkas-type results published recently, which were used as main tools in the study of convex optimization problems. The results are used to derive several strong duality results such as: Lagrange, Fenchel-Lagrange or Toland-Fenchel-Lagrange duality...
متن کاملFarkas-type results for inequality systems with composed convex functions via conjugate duality
We present some Farkas-type results for inequality systems involving finitely many functions. Therefore we use a conjugate duality approach applied to an optimization problem with a composed convex objective function and convex inequality constraints. Some recently obtained results are rediscovered as special cases of our main result.
متن کاملSome new Farkas-type results for inequality systems with DC functions
We present some Farkas-type results for inequality systems involving finitely many DC functions. To this end we use the so-called FenchelLagrange duality approach applied to an optimization problem with DC objective function and DC inequality constraints. Some recently obtained Farkas-type results are rediscovered as special cases of our main result.
متن کاملMultiobjective DC Programming with Infinite Convex Constraints
In this paper new results are established in multiobjective DC programming with infinite convex constraints (MOPIC for abbr.) that are defined on Banach space (finite or infinite) with objectives given as the difference of convex functions subject to infinite convex constraints. This problem can also be called multiobjective DC semi-infinite and infinite programming, where decision variables ru...
متن کاملFarkas-type results for fractional programming problems
Considering a constrained fractional programming problem, within the present paper we present some necessary and sufficient conditions which ensure that the optimal objective value of the considered problem is greater than or equal to a given real constant. The desired results are obtained using the Fenchel-Lagrange duality approach applied to an optimization problem with convex or difference o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Taiwanese Journal of Mathematics
سال: 2013
ISSN: 1027-5487
DOI: 10.11650/tjm.17.2013.2675